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An Analytic BRDF Model of Canopy 
Radiative Transfer and Its Inversion 

Shunlin Liang and Alan H. Strahler, Member, IEEE 

Abstract- Radiative transfer modeling of the bidirectional 
reflectance distribution function (BRDF) of leaf canopies is a pow- 
erful tool to relate multiangle remotely sensed data to biophysical 
parameters of the leaf canopy and to retrieve such parameters 
from multiangle imagery. However, the approximate approaches 
for multiple scattering that are used in the inversion of existing 
models are quite limited, and the sky radiance frequently is 
simply treated as isotropic. This paper presents an analytical 
model based on a rigorous canopy radiative transfer equation 
in which. the multiple-scattering component is approximated by 
asymptoti? theory and the single-scattering calculation, which 
requires numerical integration to properly accommodate the 
hotspot effect, is also simplified. Because the model is sensitive 
to angular variation in sky radiance, we further provide an 
accompanying new formulation for directional radiance in which 
the unscattered solar radiance and single-scattering radiance are 
calculated exactly, and multiple-scattering is approximated by the 
well-known ii two-stream approach. A series of validations against 
exact calculations indicates that both models are quite accurate, 
especially when the viewing angle is smaller than So. The Powell 
algorithm is then used to retrieve biophysical parameters from 
multiangle observations based on both the canopy and the sky 
radiance distribution models. The results using the soybean data 
of Ranson et al. to recover four of nine soybean biophysical 
parameters indicate that inversion of the present canopy model 
retrieves leaf area index well. Leaf angle distribution was not 
retrieved as accurately for the same dataset, perhaps because 
these measurements do not describe the hotspot well. Further 
experiments are required to explore the applicability of this 
canopy model. 

Index Terms-Radiative transfer, bidirectional reflectance dis- 
tribution function (BRDF), leaf canopy, biophysical parameters, 
sky radiance distribution, inversion. 
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Spherical albedo of the canopy for 
multiple scattering. 
Dirac delta function. 
Escape function in the canopy 
asymptotic reflectance. 
Forward fraction of the scattering 
energy for the atmosphere. 
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(Continued) NOMENCLATURE 

Extraterrestrial solar irradance at the top 
of the atmosphere. 
Extraterrestrial solar irradance above 
canopy after penetrating the 

atmosphere. 
Average asymmetric parameter of the 
one-term Henyey-Greenstein (OTHG) 
phase function. 
Asymmetric parameter of the OTHG 
phase function for the aerosol. 
Asymmetric parameter of the OTHG 
phase function for the canopy. 
Area scattering transfer function of the 
canopy. 
Correlation function accounting for the 
hotspot effect. 
Extraterrestrial solar net flux incident 
on the top of the canopy. 
Upward and downward 
integrated-radiance of the atmosphere. 
Unscattered solar radiance. 

Single-scattering radiance. 

Multiple-scattering radiance. 

Source function of the radiative transfer 
equation. 
Leaf dimension parameter. 
Leaf angle distribution. 
Leaf area index. 
Cosine of the solar zenith angle 6’0. 
Leaf wax refractive index. 
Unit vector of the solid angle consisting 
of cosine of zenith angle p and azimuth 
angle 0. 
Phase function of the atmosphere. 
Azimuth-independent phase function of 
the atmosphere. 
Solar azimuth angle. 
Leaf hemisphere reflectance. 
Reflectance of a Lambertian surface. 
Reflectance of a Lambertian panel. 
Bidirectional reflectance of the canopy 
with the optical depth 7,i. 
BRDF of the canopy at optical depth 7. 
Leaf hemisphere transmittance. 
Single-scattering albedo of the canopy. 
Single-scattering albedo of the aerosol. 
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I. INTRODU~I-I~N 

0 FF-nadir measurements of the radiance of Earth surface 

features are now being acquired for small test sites by 

airborne sensors, such as the Advanced Solid-State Array 
Spectroradiometer (ASAS) [l], aqd will be acquired globally 
in the near future with the development of new satellite 

sensors, such as the Multiangle Imaging Spectroradiometer 
(MISR) [2]. An important area of theoretical studies on multi- 

angle observations is the modeling of the directional reflective 
, properties of the leaf canopy, since canopies reflect radiation 

anisotropically. For this purpose, a number of physical models 

have been developed in the past, and excellent reviews of these 

are now available‘in the literature [3], [4]. Easy invertibility 

of a canopy directional reflectance model is highly desirable, 
if we wish to retrieve various environmental and biophysical 
parameters from remotely sensed imagery. For this purpose, 
an analytic model is preferable. Several analytic directional- 

reflectance canopy models based on radiative transfer theory 
[5]-[S] have been published. The differences among these 

depend on the& problem formulations and approximations 

for the multiple-scattering component. Most of these analytic 

models are based on the two-stream approximation or its 
variants, such as the Suits model [5], SAIL model [6], and 

other models [8], [9]. However, the approximate approaches 

for the calculation of multiple scattering are still quite limited. 
Numerical calculations [lo] using the Gauss-Seidel algorithm 

show that the multiple-scattering component is over 50% of 
the total upwelling canopy radiance in the near-IR region, 
which is least affected by atmospheric scattering and therefore 
highly useful in the inversion of biophysical parameters from 

multiangle remotely sensed imagery. Therefore, further de- 
velopment of accurate approximation approaches for multiple 

scattering are very necessary. Versiraete et al. [ll], [12], 
treated the canopy as a semi-infinite medium for multiple 
scattering, following Hapke’s approach [13] for scattering 
by a planetary surface. The assumption of a semi-infinite 

medium is appropriate for a dust-covered surface, but does not 
sufficiently account for the canopy in some cases, especially 
when the canopy is optically thin. For example, Liang and 
Strahler [lo] calculated from a specific parameter set that the 
difference in upwelling radiance between LAI = 2.0 and 

LAI = 6.5 is 10.2% above the canopy and 9.9% above a 
clear atmosphere in the near-IR region, and the difference 
between LAI = 1.0 and LAI = 3.0 is 33.9% above 

the canopy and 15.9% above a clear atmosphere in the red 

band. 
In this study, we derive an approximate solution for the 

multiple-scattering component of a canopy radiative transfer 
equation based on asymptotic theory, in which the canopy 
is treated as an optically thick but vertically finite medium 
with the soil reflectance also incorporated into the formulation. 
The strategy is to divide the radiation field of the canopy 
into three components: unscattered sunlight, single-scattering 
radiance, and multiple-scattering radiance. According to this 
formulation, the unscattered solar radiance has an analytical 
solution and can be calculated directly. The single-scattering 
radiance needs to be evaluated by a numerical integration 

because of the explicit inclusion of the hotspot effect. Here 
an approximate formula for the single-scattering component 
is derived using a Taylor expansion. The multiple-scattering 
component is calculated by the asymptotic fitting technique. 
This decomposition enables us to obtain very accurate solu- 
tions. If the canopy is optically very thick, and the multiple- 
scattering component dominates, the asymptotic technique 
is very accurate, so the resulting accuracy will be high. If 
the canopy is. optically thin, so that the multiple-scattering 

component is less important and the asymptotic technique less 
accurate, high accuracy is still achieved due to the exact single- 

scattering calculation. The canopy bidirectional reflectance 
distribution function (BRDF) is then easy to formulate af- 
ter creating the explicit radiance calculation formulae of all 

components. 
Most existing analytic canopy directional reflectance models 

have not incorporated sky radiance component in an effective 
manner [14], [3]. Either the canopy is completely decoupled 
from the atmosphere, or the downward radiance distribution 
is treated as isotropic. Actually, the sky radiance distribution 
is very anisotropic [lo], [lj]. Under normal atmospheric 

conditions, sky radiance will range from 5-40% of the total 
downward radiance [16]. There exist some analytic atmo- 
spheric radiative transfer models that can be used for sky 

radiance calculations. However, most of these are normally 
used for radiative flux calculations, for which the angular 
dependence is unimportant. In our new formulation, the radi- 
ation field of the atmosphere is also decomposed into three 
parts: unscattered solar radiance, single-scattering radiance, 
and multiple-scattering radiance. Only the multiple scattering 
component is approximated by the two-stream approach, and 
other two components are exactly calculated. This is appro- 
priate since we mainly need to consider the clear atmosphere 
condition where the aerosol optical depth is small, and es- 
pecially so in the near-IR bands that are most suited for the 
inversion. 

A series of validations using different numerical solutions 
were carried out to test the approximation formulae. The 
results indicate that our analytic canopy BRDF model and 
sky radiance distribution model are accurate when the viewing 
angles are not too large. The Powell algorithm is then used to 
invert parameters characterizing canopy biophysical properties 
from the soybean data measured by Ranson et al. [16], which 
have been widely used in BRDF modeling studies. 

II. A CANOPY RADIA~VETRANSFER MODEL 

Some earlier canopy radiative transfer formulations have 
assumed that the canopy has an isotopic scattering phase 
function [17]. However, theory and experiments have proven 
that the canopy scattering function is very anisotropic and is 
rotationally variant, i.e., the phase function depends not only 
on the scattering angle, but also on incident and outgoing 
directions [18]-[21]. In this study, a more rigorous canopy 
radiative transfer model has been used for the basis on which 
explicit formulae are derived. A brief description is given 
below; more details can be found elsewhere [lo], [19], [20]. 
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The one-dimensional radiative transfer equation of a hori- 
zontally homogeneous and infinite canopy is given by 

1 
=- 

J 
I-@ -+ fl)I(r, Q’) dfl’ (1) 

= 4n 

with the boundary condition 

(2) 

where the unit vector R with an azimuth angle 4 and a 
zenith angle B = cos-1 p with respect to the outward normal 
characterizes the solid angle; 5%~ characterizes the incidence 
direction; io is the incidence net flux (For) above the canopy; 

T, is the reflectance of a Lambertian background (e.g., soil) 
under the canopy; rC is the optical depth of the canopy; and 
27r- stands for the lower hemisphere. (The Nomenclature 
defines the.major mathematical notation used in this test.) 

In (l), the function G(R) is the mean projection of a 
unit foliage area in the direction R, the correlation function 
h(~, 52) is used to account for the hotspot phenomenon, and 
the area scattering phase function I’(@ -+ Q) is defined 
as consisting of both diffuse and specular components. The 
detailed descriptions of these functions are provided in Liang 
and Strahler [lo], and are based on work by Marshak [19], 
Shultis, and Myneni [20]. 

We decompose the radiation field into three parts: unscat- 
tered radiance l”(~; a), single-scattering radiance 1l(7, n), 
and multiple-scattering radiance 1” (7, a) 

I(r, i-2) = IO@, a) + Il(T, i-22) + I”‘(r, 52). (3) 

A simple schema is represented in Fig. 1. Uncollided ra- 
diance includes both downward unintercepted radiance and 
the upward radiance reflected once from the soil surface 
without further scattering. Single-scattering radiance has been 
scattered once by the canopy, and multiple-scattering radiance 
is scattered more than once by the canopy. 

For unscattered solar radiance, the formulas are 

IOh* n1 
\I I 

i 

I,“(T, R) = ioexp - [ ~]w - flo) 

= I~~:‘n9 = io/rexp [-w]rsp0exp[.-<(T3 fl)] (4) 

p > 0 

where 

~(7, R) = $~(t. G)G(R) dt 

= G(R)? - 

Here tl is defined as 

tl = exp 
Nflo, fl)r A(Qo, R)rc 

- - 
kH I kH . 

(4 
I 

@I 
I 

(cl 

Fig. 1. The schema of the radiation field decomposition: (a) unscattered 
solar component, (b) single-scattering component, (c) and multiple-scattering 
component. 

For the single-scattering radiance. the solution in the down- 
ward direction (CL < 0) can be easily written as 

P(r; 0) 
rio r(Ro -0) 

GoI P = PO 

(6) 

( .[exp (-w) - exp (--)I otherwise. 

In the upward direction (p > 0), the solutions are a little 
complicated because of the hotspot effect: 

P(T: n) = 1 TCF(Tt: 0) J P T 
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where the second integration in (7) can be explicitly obtained 

by means of (5) with an alternative integrand range, and 

F(r’, !-I) = $(n, --+ Sl)exp [-WI. (8) 

Now we begin to deal with the multiple-scattering radiance 
r”(r, R). The radiative transfer equation and its boundary 

conditions are given by 

-p@h 0) 
8-r 

+ G(R)I”(T, 0) = J(T, fl) (9) 

subject to boundary condition: 

I”“(O, sl) = 0 

I”(Tc, .?) = 5 p 
J 

2 
K 

-l~‘l[I~(~c, 0’) + %, @)I dfi’. 

Here the source function is 

J(T, f-2) = 1 J x 4x 

I-(0 -+ fl)[I”(~, 0’) + I~(T, R’)] da’ 

+1 J p 2Y+ 

I’@ --) fl)I”(~, !A’) dR’. (10) 

It is obvious that no closed-form solution to (9) can be derived. 
The following section will be mainly devoted to deriving the 
approximate formulae of IA4(~., 0) using asymptotic theory 
as well as the analytic formula of 1l(~, 0). 

III. DEVELOPMENTOF THE 

PARAMETRIC CANOPY BRDF MODEL 

In the previous section, the canopy radiative transfer equa- 
tions, boundary conditions, and their solutions have been 
discussed. However, the multiple-scattering component has to 
be calculated using an iteration technique, and numerical inte- 
gration is required to evaluate the upwelling single-scattering 
component as well. For the purpose of inversion, the solution 
should be as explicit and simple as possible. In the following, 
we will first derive the approximation to the integration in (7), 
then develop the formula for the multiple-scattering calculation 
using the asymptotic fitting technique. 

A. Explicit Formula for Upwelling Single Scattering Radiance 

Let us consider the upwelling radiance just above the 
canopy. It follows from (7) that 

J 
7, P(O, fl) = ‘II exp{-a#+ b[l - exp(-cT’)]}dT’ (11) 

0 

where 

i 

a=p+yy b = pE7T-e (12) 

cam ‘u. _ qno, wo. 
=P 

Substituting y = exp (-CT’) for T’ associated with above 
equation leads to 

uexp(b) 
P(O, f-2) = -~ 

i 

y0 a -I 
YC exp (--by) dy (13) 

c I 

where ~0 = exp (-CT=). Simulations show that c is greater than 

1 and b is much smaller than 1 in most directions except in the 
hotspot region, where A(&,, 52) approaches zero. Expanding 
exponents in (13) and taking the first two terms, (13) becomes 

1 . (14) 

Further analysis indicates that the third term in the bracket 
on the right side of this equation mainly contributes to the 

hotspot component. 

B. Multiple Scattering Approximation 

In the visible bands, the multiple-scattering component is 
very small, typically 5%. However, it becomes over 50% 
of the total upwelling radiance in the near-IR bands. In this 
spectral region, the single-scattering albedo is very large, and 
the optical depth is not small. Thus it seems reasonable to 
use asymptotic theory to approximate the multiple-scattering 
component. 

Our previous numerical results show that the multiple- 

scattering component is relatively insensitive to azimuthal 
angles since when the canopy becomes thicker optically, the 
photons will scatter more times before emerging from the 
canopy. Also it seems that the multiple-scattering radiance 
distribution probably approaches the isotropic case. However, 
our results in a series of calculations show that the isotropic 
scattering function will cause large errors when there are 
a number of horizontal leaves in the canopy, such as in a 
planophile, or spherical canopy. Instead, a Henyey-Greenstein 
scattering phase function for the multiple-scattering and inde- 
pendent radiance of azimuth angles are assumed in this study. 
Although the Henyey-Greenstein function is an approximation 
to the real phase function, and will cause some errors, the 
single-scattering radiance is still evaluated using the exact 
phase function. As a result, this formulation still can predict 
accurately the angular dependence of the reflectance. 

The asymptotic solution for a finite-thick medium with an 
arbitrary scattering phase function has been derived for many 
years [22]. If the canopy is dense with a thick optical thickness 
T= and black soil is assumed, the upwelling radiance is given 

by 

where the 

asymptotic 

f(O. PL: bo) = &dTc: IL, Po)lPol~ol~ (15) 

reflectance can be calculated using the classic 
theory 1231: 

Ro(Tc, P, PO) = %e(P, PO) 

-~exP(-~r,)E(/1)E(l~ol). (16) 

nm(p, klo) is the reflectance function of a semi-infinite 
canopy, and E(LL) is the escape function. To account for 
the soil reflectance, the classic reflectance formula in the case 
of a Lambertian soil is 
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where r-, is the soil Lambertian reflectance, to(r,, p) is the they do not produce results that are significantly different from 
diffuse transmittance, and A* is the spherical albedo of the the tabular data for the canopy problem. 
canopy. The above formulae determine the reflectance of all orders 

With some algebraic manipulation, a more simplified for- of scattering. In order to account for the hotspot effect and 
mula considering the back-ground reflectance has been derived the dependence of the total reflectance on azimuth angle, 
on the basis of above relations by Ring [24] the exact single-scattering component should be used. Thus, 

~a(% k PO) = R&~ f%) - 
mG(~s)GMr-lol> the multiple-scattering reflectance in (15) can be obtained 

exp(2KT > _ iG(r,) (18) through subtracting the azimuth-independent single-scattering 
c component from (18): 

where G(r,) is defined as 

Although the above formula originally is for a thick cloud, its 
derivations are also valid for the canopy, and the same results 
can be derived. If T, = 0, then (18) is equivalent to (16). 
Notice that f = E exp (-KT=). 

The parameters K, 1, n, and m have been correlated with the 
similarity ‘parameter s, defined in terms of the single-scattering 
albedo w, and the scattering asymmetry factor ge of the One- 
Term Henyey-Greenstein (OTHG) scattering phase function 
as 

1 - w, 
.5= 

d-- 1 - WCQC. 
(20) 

Ring and Harshvardhan [25] give the following results: 

~ = as _ (0.985 - 0.253~)~~ 

6.464 - 5.464s ’ 
1 = (1- 0.681s)(l - s) 

1+0.7929 ’ 

m = (1 + 1.537s) In 
1 + 1.8s - 7.087~~ + 4.74~~ 

(1 - 0.819s)(l - s)2 1 . (21) 

The spherical albedo is estimated by van de Hulst [23]: 

A* = (1 - O.l39s)(l- s) 

1+1.17s 
(22) 

The semi-infinite reflectance and the escape function are 
employed using look-up table procedures. The tabular data 
are taken from van de Hulst [23] and stored in the computer. 
The linear interpolation method is used to produce the corre- 
sponding values. In fact, the escape function E(p) was fitted 
by Yi et al. [26] 

E(p) = -4(p) + B(/f)(l - s) + C(p)(l - s)’ 

+wu - 43 (23) 

where the coefficients are 

A(b) = -1.113 + 5.3924,u - 9.1658p2 + 5.46731~~ 

B(p) = 5.9551 - 26.488~ + 46.782~~~ - 25.7431~~ 

C(p) = -8.7748 + 43.229jf - 73.949p2 + 39.059pL” 

D(p) = 4.3639 - 21.230/~ + 36.285~~~ - 18.799p3. (24) 

Although the polynomials for the escape function E(.) are 
fitted from data with LL?~ > 0.8, 0.8 5 gC 5 0.9, and p > 0.5, 

where the pC(,u, ~0) is the azimuth-independent part of the 
Henyey-Greenstein function G(e): 

PcbL, PO) 

1 J 
2x 

=- 

2ir 0 
~~[CLCCO + 

The total canopy BRDF becomes the sum of the exact single- 

scattering term plus the unscattered sunlight reflectance term 
normalized by the incident radiation and the approximate 
multiple-scattering component: 

R(Tc, fl2, no) = 
P(O, 0. no) + IO(O, i-2, no) 

bob0 
+G% PT PO), (27) 

7r 

IV. MODELING DOWNWARD SKY RADIANCEDISTRIBUTION 

The previous section considers only the collimated (direct) 
incident radiation. However, canopies always are illuminated 
by both direct solar radiance and diffuse sky radiance in the 
natural environment. For such a case, the upwelling radiance 
above the surface should be 

2T -qTa, Q) = JJ ’ [R(T,, n, %)[l”(Ta, 0,) 
0 -1 

+1’(Ta, fli)fi(fli - %)]IPiII dfii (28) 

where I'(T~, 0,) is the direct solar radiance, I"(T~, C?i) is 
the scattered downward radiance, R(T,, R! Qi) is the canopy 
BRDF defined by (27), and T= is the atmospheric optical depth. 

The upwelling radiance can be measured by hand-held 
radiometers with small solid-angle fields of view. It is evident 
that we need to know the sky radiance distribution in order to 
retrieve relevant parameters from measured radiances. Some 
instruments can measure both the upwelling radiance and the 
downward sky radiance simultaneously (e.g., PARABOLA 
[27]), but most cannot. In the following, we discuss a sky ra- 
diance model for the case that sky radiances are not measured. 

Attempts to describe the angular distribution of the sky 
radiance have generally followed three approaches. In the 
first approach, the radiative transfer equation is solved using 
various numerical techniques [El. For the sake of the inver- 
sion where rapid inversion is the goal, this approach is not 
practical since the iterative solution process is computationally 
quite expensive. An alternative approach is to use a statistical 



1086 IEEE TRANSA‘ZIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 31. NO. 5, SEPTEMBER 1993 

technique to fit collected sky radiance data. Some models have 

been proposed over the years, for example, those for overcast 
skies [28], [29]. The third approach is to derive approximate 
formulae based on a radiative transfer equation. For example, 

Sobolev [30] provides an Eddington-type approximation for- 
mula, which was found to be quite accurate through compari- 
son with field measurements [31]. Verhoef [32] presents a four- 
stream approximation for the scene modeling. Another double- 
scattering sky radiance model has been used for the data 
analysis of the component parabolic concentrating collector 
based on the successive-order-of-scattering principle 1331. 

Some popular codes such as LOWTRAN [34] and 5s [35] are 
based on two-stream approximations using this approach. This 
type of model is well suited to the present study. However, 
most of these models are developed mainly for radiative flux 
calculations. 

In the following, we will briefly describe a new formulation 
for calculating the sky radiance distribution based on the two- 
stream approximation of atmospheric radiative transfer for the 
multiple-scattering calculation. For a plane-parallel homoge- 
neous atmosphere in the absence of clouds and polarization, 
the radiative transfer equation can be written as [36] 

pw, Q) 
dr 

= I,(r, 0) - 2 
J 

I’@‘, Q)I,(r, R’) d!2’ 
47r 

(29) 

with the boundary conditions 

I,(O, 0) = 6(R - no)7rFao 

where wa is the atmospheric single-scattering albedo, P(q) 
is the phase scattering function, and R(R’, 52) is the canopy 
BRDF defined in (27). The scattering properties of the at- 
mosphere are taken to depend on Rayleigh molecular and 
aerosol particles, and the scattering phase function is thus 
defined as the weighted average of individual scattering phase 
functions where the aerosol phase function takes the one-term 

Henyey-Greenstein (OTHG) function. 
To provide an accurate characterization of the angular 

distribution of the sky radiance, the radiation field is divided 
into three parts, as for the canopy: unscattered solar radiance, 
single-scattering radiance, and multiple-scattering radiance. 
Here, we do not give the corresponding equations and bound- 
ary conditions; interested readers are referred to our previous 
paper [lo]. For the first two components, their downward 
radiances are 

. [exp (-$-J - exP (-$)I IL # PO I+(r)=Xrexp(r~r)+,Yzexp(-qr)+Xaexp --?- 
( ) 11101 

I-(r) = $ 
1 
(n - 71)X1 exp (777) + (rl + 71)X2 exp C--777) I& n) = 3 P(Q)exp -6 ( > 

jl = /so. (31) _1 
( 11 -- + toexp ,,:,I i (36) 

radiance will be dealt with I,(r, p) = JlnI,(r, p, 4) d& By 
defining the hemispherical integrals 

O I-(r) = J J4lak P) d/L (32) 

where f stands for upward (+) and downward (-) directions, 
respectively, the radiative transfer equations become [37] 

dI+ 
- = ylI+ - y2I- - xF,ou,y3 exp 
dr 

dI- 
- = yg+ 
dr 

- y1I- + ~~F,ow,(l - 73) exp 

Meador and Weaver [37] showed that the differences among 
various two-stream approximations are due to their definitions 
of coefficients yr-ya. Here we accept the hybrid modified 
Eddington-delta approximation [37], which has been proven 
to be generally superior to other two-stream approximations 
over a wide range of atmosphere conditions. The parameters 
are 

y1 = 7 - 3g2 - wa(4 + 39) + wag2(4P + 39) 

411 - 9’(1 - IPOI)] 
y2 = g2 - 1+ f&(4 - 39) + wzg2(4P + 39 - 4) 

411 - 9*(1 - Ir-lol)] 
“(3 = P (34) 

where g = Ta,g,/(r,, +7;), ga is the parameter of the OTHG 
function, rae and r,. are the aerosol and Rayleigh optical depth, 
respectively. /? is the backscatter fraction, defined as 

P = ; ol~~l~ol, -d) &’ J (35) 

where p(p, p’) = &Jcjai;P(,+ 4, !I’: 4’) d#. 

Meador and Weaver [37] provide the solutions to (33) for 
the case of an absorbing boundary condition (black surface). 
However, in this study, we have to consider the canopy 
reflectance. It is very difficult to use an arbitrary BRDF as 
the boundary condition to obtain the explicit solution. Instead, 
the spherical albedo p of the canopy, which can be calculated 
by the canopy BRDF defined in (27). is used to represent the 
canopy reflectance. Thus, the boundary conditions for (33) are 

I-(o) = 0 

I+(G) = p[I-‘(7,) L ~F0li~0lexp (-~Jl~~l)l. 

Note that this simplification is used only for the multiple- 
scattering calculation. The tedious derivation procedures are 
omitted here, and the final solutions are 

For the multiple-scattering calculation, the two-stream ap- 
proximation is applied where only the azimuthal-integrated 
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where Xi (i = 1, 2, 3) are defined as 

x1 = 
tow2 - wo(71+ 71) 

(77 + r1)w + (17 - nb2 

x2 = - 
tow - Wo(Y1 - 71) 

(7 + 7l)W + (71- nbJ2 

~Faowa 
x3 = 

‘Y173 + 7274 - & 

v2 - 5 

1. 

Other parameters are given by 

wo= { [+I+&) -,1x3 

- + ~F,oP(IPo l - ~~73) 
I ed> 

exp 

WI = [q(n - 7) - 721 exp (717,) 

w2 = Kn + V)P - 721 exp (7-J 

77= &-r22. 

(37) 

(38) 

If p is equal to 0, then the above formulae are equivalent 
to those of Meador and Weaver. Thus, the total approximate 
downward scattering radiance at any arbitrary direction is 

(P < 0): 

L(Tl, P) = 
1 

1 - g2(l - IPOI) 

*[(l - g2)T + g2Q - Po)I-(TJ (39) 

where T is defined as 

T = (1 + 1.5# -(7cl) + (1 - 1 

Fig. 2. Comparisons of the present analytic canopy model with Monte Carlo 
models. The solid curves stand for the analytic model, the dotted curves for the 
Antyufeev-Marshak model, and the dashed curves for Ross-Marshak model. 
Here T, = tt = 0.46, r3 = 0.2, LAI = 3.0, k = 0.08, 60 = O’, erectophile 
canopy, 00 = 60’ for the upper set of curves, 00 = 30’ for the lower set 
of curves, gc = 0.08. 

energy f is considered to be in the forward peak, the above for- 
mulas can still be used as long as the following transformations 
are made in the coefficients: 

Although various choices off are possible, the most frequently 
used choice [38], and the one used in all computational results 

.5dI-(7,). 
to be presented below, is f = 92. 

The multiple-scattering downward radiance is the total approx- 
imate radiance less the approximate single-scattering radiance 

I,“(%, p) = L&la, P) - &a, P). (40) 

For iil(~~, p), the second term of the right side of (29) is zero. 
Thus we could have the same equation as (33) except that yl 
and y2 must be replaced by yi and -,i defined as 

7 - 3g2 

-6 = 4[1 - g2(1- ,Pol)] 

g2 - 1 

ri = 4[1 - g2(1 - I/.Jol)l’ 

Other formulas are the same as those of i,(~,.h). Notice that 
the spherical albedo p needs to be set zero for I~(T~, h). Thus, 
the total downward sky radiance becomes 

L(~a, 0) = I,(&, q + Iff(-ra, cL)/Zr. (42) 

It is possible to incorporate a b-function adjustment to 
account for the forward scattering peak in the context of the 
two-stream approximation [38]. If a fraction of the scattering 

V. MODEL VALIDATIONS 

To evaluate the accuracies and analyze the behaviors of 
the analytic BRDF leaf-canopy model and the sky radiance 
distribution model, a series of validations have been carried 
out. For the canopy model, Monte Carlo methods [39], [40] 
and the discrete-ordinates method [19] are used to test the 
accuracy of the present model. Fig. 2 compares our analytic 
calculations with two Monte Carlo methods for an erectophile 
canopy (mainly vertical leaves). There is a good agreement 
among these three models. 

Fig. 3 provides another comparison of our analytic model 
to the Antyufeev-Marshak model [39] for a planophile 
canopy (mainly horizontal leaves). Our model overestimates 
reflectance somewhat when the viewing angles are greater 
than 55’. 

Fig. 4 demonstrates the comparison for a spherical canopy 
(leaves randomly distributed) calculation with the discrete- 
ordinates model of Marshak [19]. Three sets of curves stand 
for different azimuth directions. This comparison also confirms 
that our mode! predicts reflectance well for different azimuth 
directions. Compared with numerical models, this model has 
reduced the computation significantly. 
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Fig. 3. Comparisons of the present analytic canopy model with a Monte 
Carlo model. The solid curves stand for the present model, and the dotdashed 
curves for the Antyufeev-Marshak model. Planophile canopy, gc = 0.1; other 
parameters a& as in Fig. 2. 
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Fig. 4. Comparisons of the present analytic canopy model with a dis- 
crete-ordinates model. The solid curves stand for the analytic model, and the 
dot-dashed curves for the Marshak model (19, fig. 61. 1 stands for 4 = I$O 
and $J = r$o + 180°, 2 for 6 = QO + 45“ and 0 = 00 + 225’, and 3 for 
d = &J +90° and d = do +270’. Uniform canopy, LAI = 4.0, 00 = 40°, 
00 = loo’, gc = 0.15, other parameters are the same as Fig. 2. 

The analytic sky radiance-distribution model was validated 
using the DISORT discrete-ordinate code [41]. Fig. 5 compares 
our analytic model with the numerical model for aerosol 
scattering above a Lambertian surface. If the aerosol optical 
depth is smaller than 0.2, our analytic model is quite accurate, 
especially when the zenith angle is smaller than 75’. Note 
that if the sky is clear, the aerosol optical depth is usually 
smaller than 0.2 in the near-infrared region. Although only 
one set of results is presented here, other calculations validate 
this conclusion. 

VI. INVERSION ALGORITHM AND DATA ANALYSIS 

Having validated the canopy BRDF and the sky radiance 
distribution models against more exact calculations, the re- 
maining issue is how to invert these models from measured 
directional data to provide estimates of biophysical parameters. 
As in ordinary inversion studies [3], an optimum technique will 
he used to invert them through minimizing a merit function 

00-l 
0 10 20 30 

ze%h an& 
M) 70 80 w 

Fig. 5. Validation of the sky radiance distribution model using the numerical 
discrete-ordinates algorithm for the aerosol atmosphere. The solid lines stand 
for our model, and the dashed lines for the numerical model. 00 = 30, azimuth 
angle qS = I$O = 0, gn = O.i3, rS = 0.2, w. = 0.9. The numbers labeled 
in the figure are the aerosol optical depths. 

F(Q,, @t,) consisting of the sum of squares of the residuals 
and a penalty function 

k=l 

(45) 
where wk’s are weight factors, Ik is the measured radiance, 
ik(q.4, an) is the predicted radiance by models with canopy 
BRDF parameters \k~ and atmosphere parameters \Irn, and 
f(qA, 9~) is the penalty function, which keeps estimated 
parameters or their functions in reasonable bounds. In this 
study, the beta function [42] is employed to represent the leaf 
angle distribution, which contains two parameters ‘u. and V. 
Thus, the parameter set Q.4 includes 

LAI 

Tl 
t1 
u and v 
k 

n 

SC 

T.5 

leaf area index; 
leaf reflectance; 
leaf transmittance; 
LAD parameters; 
leaf dimension parameter; 
leaf wax refractive index; 
asymmetry parameter of Henyey-Greenstein 
phase function for the canopy multiple- 
scattering calculation; 
soil Lambertian reflectance. 

The atmospheric parameter set Qn includes: 

7, aerosol optical depth; 

Qa asymmetric parameter of Henyey-Greenstein 
phase function for the aerosol; 

w, aerosol single-scattering albedo; 

Tr Rayleigh optical depth 

where rr usually can be treated as a constant at a specific 
wavelength. 

The construction of the penalty function is simple. Based 
on constraint functions, say, gi(9~4, Qn) > 0, the Siddall 
algorithm [43] is 
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where i identifies the set of violated constraints, that is 

gi(qA, QB) < 0 (47) 

for all i in i. The constraint function comes from a series of 
constraints on either individual parameters or their functions. 
For example, the single-scattering albedo w should be 0 5 w 5 
1. The spherical albedo of the canopy p should be 0 < p < 1. 
If the atmosphere parameters QB are known, then only BRDF 
parameters are to be estimated. 

In order to find optimal estimates of these parameters, an 
iteration process is necessary. At each iteration, the iteration 
length and iteration direction need to be determined. To date, 
the most successful direct search algorithm is the method due 
to Powell [44], especially with the modifications suggested 
by Zhangwill [45] and Brent [46], which we will refer to 
as the Powell algorithm. One of the best features of this 
algorithm. is that we do not need to derive the derivatives 
of the merit function, which is often very difficult. Thus, we 
can incorporate any type of penalty function to yield realistic 
solutions. This algorithm has been recently used for inversion 
of canopy parameters by Kuusk [47]. 

To test the inversion procedure, the models are used to 
calculate several sets of noise-free directional data, each with 
60 angles in the reflectance hemisphere. In all attempts, the 
inversion program converges to the true parameters, demon- 
strating that our models are mathematically totally invertible, 
as discussed in Goel [48]. However, real measured data will 
contain noise to some extent. As a further test, we ran the 
inversion program for the soybean reflectance data measured 
by Ranson et al. [16], which have been widely applied in in- 
version research. We selected the near-infrared data (800-l 100 
nm) measured on August 17, 1980 because on that date the 
canopy was completely closed and exhibited minimal row 
structure, so that the homogeneous assumption for the canopy 
is valid. To fit the model to these data, atmospheric conditions 
must be specified. The extraterrestrial solar irradiance data are 
from [49]. A correction factor accounting for the variation 
of the sun-earth distance is taken from Iqbal’s tabular data 
[50]. Since the atmospheric parameters were not measured, we 
selected reasonable values for moderately clear air: w, = 0.95, 
ga = 0.75, r,, = 0.02, 7,. = 0.012, for band 4. The upwelling 
radiance above the canopy is normalized to give the reflectance 

where TO is the reflectance of a Lambertian panel. 
In our tests, we selected four of the nine free canopy 

parameters: LAI, LAD parameters u and v, and gc. Other 
parameters are set to the measured values. As the leaf di- 
mensional parameter X: and leaf wax refractive index n were 
not measured, we arbitrarily set k = 0.05, and n = 1.2. To 
reduce the computational requirements, we first inverted gc, 
then retrieved LAI, u and v. Further, reflectances of viewing 
angle 0 = 60’ are not used in the inversion. Another reason 
that we did not use the reflectance of 60” viewing angle is 
that this model is most accurate at smaller viewing angles, as 
shown in the validations. All weight factors wi are set at unity. 
The results are summarized in Table I. 

TMLE 1 
INVERSION RFNLTS FOR ME SOYBEAN DATA 

Data Set e. 90 Retrieved Values 

# LAI ?.I v SC 
cl 38 136 2.831 2.786 2.767 0.172 

c2 35 145 2851 2.796 3.846 0.168 

c3 32 163 2.856 3.950 8.674 0.174 

c4 31 174 2867 5.050 10.001 0.164 

c5 31 196 3.024 3.013 8.227 0.120 

c6 33 206 3.086 3.067 8.845 0.109 

c7 36 217 2.877 2.721 5.011 0.103 

c8 38 225 3.041 3.504 9.825 0.114 

c9 44 237 2971 3.907 8.309 0.123 

cl0 48 243 3.090 3.757 8.210 0.143 

cl1 55 251 2893 2.922 3.875 0.140 

cl2 61 258 2.895 2.078 2.839 0.150 

Measured value 290 1.806 2.447 

Fig. 6. Illustrations of measured (solid curve) and retrieved LAD at different 
solar positions (dot-dashed cuwe for ~12, dashed curve for ~11, and dotted 
curve for cl). 

From the table, we can observe that LAI is very accurately 
inverted, but u and v depart somewhere from the measured 
data. When the measured and retrieved parameters are pre- 
sented as leaf angle distributions (Fig. 6), they are surprisingly 
similar for some data sets such as ~2, cll, ~12, in spite of the 
numerical differences in parameter values. However, there are 
larger deviations from other data sets. In a series of inversions, 
Goel and his colleagues found that LAD cannot be accurately 
inverted from Suits model and/or SAIL model, although the 
average leaf angle can be iv-e11 inverted [51]. Kuusk [47] also 
found that Nilson-Kuusk model cannot be inverted well in 
the near-IR region, where the multiple-scattering component 
dominates. However, we think that one of the major reasons 
that not all LAD’s can be correctly inverted is that the 
soybean directional reflectance data do not contain hotspot 
measurements. These were deliberately omitted, due to the 
sensing of the shadow of the instrument. 

VII. DISCUSSION 

Before finishing this paper. we would like to discuss several 
issues associated with the above models. 

1) Canopy phase function: Theory and experiments have 
shown that the canopy phase function is rotationally 
variant. That means that the scattering function de- 
pends not only on the phase angle, but also on the 
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absolute incidence and outgoing directions. Therefore, 
a rotationally invariant transfer phase function such as 
the Henyey-Greenstein function is inappropriate for the 
canopy problem. In earlier modeling efforts, it has often 
been used due to its simplicity. In the present work, 
it is only used for the multiple-scattering calculation, 

while the single-scattering calculation still is based on 
the exact rotationally-variant phase function. In princi- 
ple, the asymmetry factor gc of the Henyey-Greenstein 
function is not an independent variable, and can be 
determined by other variables such as rr, tr , n, k, and so 
on. However, it is difficult to relate gc to those variables, 
especially in the inversion program. With the additional 
variable gc, the inversion efficiency greatly improves. In 
the atmospheric radiative transfer, the asymmetric factor 
is usually greater than 0.60. Fig. 7 illustrates the phase 
function with different g values. The smaller the factor, 
the larger the backscattering component. It intuitively 
seems reasonable if the canopy has larger backscattering 
than aerosol. 

2) Coupling of the atmosphere and canopy: Although both 
the atmosphere and canopy are parameterized by asymp- 
totic theory and the two-stream approximation in this 
study, a consistent approximation will be preferred. 
The interaction between the canopy and atmosphere is 
illustrated in (28), in which numerical integrations are 
required. A 6 by 10 double-Gauss quadrature [lo] is 
always examined in the above results. The procedures 
described in the above several sections are suited for 
ground-measured data. For airborne or spaceborne re- 
motely sensed data, path radiance must be taken into 
consideration. A new formulation incorporating an non- 
Lambertian surface has been developed and will be 
discussed in a forthcoming paper [52]. 

3) Computation problems: Several factors affect the inver- 
sion speed. First, the calculation of the area-scattering 
transfer function of the canopy is computationally very 
expensive, which has been recognized by Nilson [53]. 
Second, the Powell algorithm is time consuming al- 
though this algorithm is quite robust in obtaining the 
global minimum. Another factor is the coupling between 
the atmosphere and canopy. It seems to us that the 

development of a new parameterization scheme for the 
calculation of the area-scattering transfer function will 
be also very helpful to speed to inversions. 

4) Further improvements: First, we need to improve the 
inversion efficiency of this model, including (1) the 
consistent parameterization schema of both atmosphere 
and canopy, and (2) the approximation formula for 
the calculation of the area-scattering transfer function. 
Second, more examinations of the asymmetric factor 
gc are required to understand its dependence on other 
biophysical parameters. Third, a sensitivity study is 
required in order to determine how many and which 
parameters can be retrieved effectively given a set of 
measurement data. The final issue is how to incorporate 
non-Lambertian soil reflectance into this model. In fact, 
this is not a critical problem for an optically thick canopy 

01 I 
0 30 m phas:a”angle 120 150 180 

Fig. 7. Illustration of the Henyey-Greenstein function with different 
asymmetric parameters. 

because in such a medium, the unscattered radiance 

becomes very small, and multiple scattering tends to 
smooth the angular anisotropy of the soil reflectance. In 
addition, there are several overlap functions accounting 
for the hotspot effect available [54], [ll]. Comparisons 
of these functions in the present framework would be 
very helpful for us to more effectively mode1 the canopy 
radiative transfer. 

VIII. CONCLUSION 

An analytic BRDF mode1 of canopy radiative transfer 
as well as an analytic sky radiance distribution model 
are developed. To obtain more realistic solutions, the 
canopy and sky radiation fields are divided into three parts: 
unscattered solar radiance, single-scattering radiance, and 
multiple-scattering radiance. The first two components can be 
explicitly calculated, and the multiple-scattering component 
is approximated by the asymptotic technique for the canopy, 
and the two-stream technique for the atmosphere. Compared 
with other invertible canopy models, the present canopy 
model is uniquely based on a rigorous radiative transfer 
equation so that the multiple-scattering approximation can 
be validated using accurate numerical solutions. Also, the 
sky radiance distribution model is directly incorporated. The 
results indicate that our canopy mode1 fits the numerical 
solutions and field data very well. The inversion procedure 
applied in this paper enables us to effectively explore 
the relationship between the directional reflectance of the 
plant canopy and the biophysical parameters that control 
it. 
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